The correct option is
C 2Given A+B+C=90o
∑cos(A+B)cosAcosB
=cos(A+B)cosA.cosB+cos(B+C)cosB.cosC+cos(C+A)cosC.cosA
=cosAcosB−sinAsinBcosA.cosB+cosB.cosC−sinBsinCcosB.cosC+cosC.cosA−sinC.sinAcosC.cosA
=1−sinA.sinBcosA.cosB+1−sinB.sinCcosB.cosC+1−sinC.sinAcosC.cosA
=3−sinAcosA.sinBcosB−sinBcosC.sinCcosC−sinCcosC.sinAcosA$
=3−tanA.tanB−tanB.tanC−tanC.tanA
=3−[tanA.tanB+tanB.tanC+tanCtanA].......(I)
A+B+C=90o
A+B=90o−C
Apply tan on both sides
tan(A+B)=tan(90o−C)
⇒tanA+tanB1−tanAtanB=cotC
⇒tanA+tanB1−tanA.tanB=1tanC
⇒tanA.tanC+tanB.tanC=1−tanA.tanB
⇒tanA.tanB+tanA.tanC+tanB.tanC=1.......(II)
Substitute equation (II) in (I)
⇒∑cos(A+B)cosA.cosB=3−[tanA.tanB+tanBtanC+tanC.tanA]
=3−1
=2
∴∑cos(A+B)cosA.cosB=2