If A+B+C=90degrees then sin2A+sin2B+sin2C=?
Options 1)cosAcosBcosC
2)2cosAcosBcosC
3)3cosAcosBcosC
4)4cosAcosBcosC
Answer is option 4
The question is SIN2A+SIN2B-SINC
Dear bayana,
he double angle formula:
sin 2Θ = 2 sin Θ cos Θ
sin 2A + sin 2B - sin 2C
... = 2 sin A cos A + 2 sin B cos B - 2 sin C cos C
Since A + B + C = π ;
A is a supplement angle of ( B + C )
B is a supplement angle of ( A + C )
C is a supplement angle of ( A + B )
TAKE NOTE that the sine of supplementary angles are equal !!!
sin 2A + sin 2B - sin 2C
... = 2 sin A cos A + 2 sin B cos B - 2 sin C cos C
... = 2 sin ( B + C ) cos A + 2 sin ( A + C ) cos B - 2 sin ( A + B ) cos C
From the Sum of Angle Identity:
sin ( α + ß ) = sin α cos ß + cos α sin ß
sin 2A + sin 2B - sin 2C
... = 2 sin A cos A + 2 sin B cos B - 2 sin C cos C
... = 2 sin ( B + C ) cos A + 2 sin ( A + C ) cos B - 2 sin ( A + B ) cos C
... = 2 ( sin B cos C + cos B sin C ) cos A
..... ..... + 2 ( sin A cos C + cos A sin C ) cos B
..... ..... – 2 ( sin A cos B + cos A sin B ) cos C
... = 2 cos A sin B cos C + 2 cos A cos B sin C
..... ..... + 2 sin A cos B cos C + 2 cos A cos B sin C
..... ..... – 2 sin A cos B cos C – 2 cos A sin B cos C
... = 2 cos A cos B sin C + 2 cos A cos B sin C
... = 4 cos A cos B sin C
Now taking sin2A+sin2B +sin2C
= If A+B+C=180 degree, then A+B=180-C hence sin(A+B) = sinC, cos(A+B)=-cosC
sin2A + sin 2B +sin2C
= 2 sin(A+B)cos(A-B) + 2sinC cosC
=2sinC cos(A-B)+2sinC cosC
=2sinC (cos(A-b) + cos C)
=2sin C(cos(A-B) - cos(A+B) )
= 2sinC . 2sin A sin B
=4 sinA sin B sin C