If a, b, c and d are in G.P show that (a2+b2+c2)(b2+c2+d2)=(ab+bc+cd)2.
Let 'r' be the common ratio of the given G.P
Then b=ar,c=ar2 and d=ar3
Now, L.H.S =(a2+b2+c2)(b2+c2+d2)
= (a2+a2r2+a2r4)(a2r2+a2r4+a2r6)
= a2(1+r2+r4)a2r2(1+r2r4)
= a4r2(1+r2+r4)2
R.H.S = (ab+bc+cd)2
= (a.ar+ar.ar2+ar2.ar3)2
= (a2r+a2r3+a2r5)2
⇒(a2r)2[1+r2+r4]2⇒a4r2[1+r2+r4]2
Thus, L.H.S. = R.H.S.