If A, B, C and D are the points with position vectors ^i−^j+^k,2^i−^j+3^k and 3^i−2^j+^k respectively, then find the projection of →AB along →CD.
Here, →OA=^i+^j−^k,→OB=2^i−^j+3^k,→OC=2^i−3^k and →OD=3^i−2^j+^k∴ →AB=→OB−→OA=(2−1)^i+(−1−1)^j+(3+1)^k =^i−2^j+4^k and →CD=→OD−→OC=(3−2)^i+(−2−0)^j+(3+1)^k =^i−2^j+4^kSo, the projection of →AB along →CD=→AB.→CD|→CD| =(^i−2^j+4^k).(^i−2^j+4^k)√12+22+42 =1+4+16√21=21√21 =√21 units