If a,b,c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that b2−acc2−bd=4a3c.
Let
T6=a+nC5xn−5α5
=n!5!(n−5)!×xn−5α5=n(n−1)(n−2)(n−3)(n−4)120×xn−5α5
T7=b=nC6xn−6α6
=n!6!(n−6)!×xn−rα6=n(n−1)(n−2)(n−3)(n−4)(n−5)720×xn−6α6
T8=c=nC7xn−7α7
=n!7!(n−7)!×xn−7α7=n(n−1)(n−2)(n−3)(n−4)(n−5)(n−6)5040×xn−7α7
T9=d=nC8xn−8α8
=n!8!(n−8)!×xn−8α8=n(n−1)(n−2)(n−3)(n−4)(n−5)(n−6)(n−7)40320×xn−8α8
To prove: b2−acc2−bd=4a3c
Now dividing b by a i.e. T7 by T6
T7T6=ba=n(n−1)(n−2)(n−3)(n−4)(n−5)720×xn−6α6n(n−1)(n−2)(n−3)(n−4)120×xn−5α5
=n(n−1)(n−2)(n−3)(n−4)(n−5)×120×xn−6α6720n(n−1)(n−2)(n−3)(n−4)×xn−5α5=n−56×x−1α
=(n−5)α6x....(1)
Now,
T8T7=cd=n(n−1)(n−2)(n−3)(n−4)(n−5)(n−6)5040n(n−1)(n−2)(n−3)(n−4)(n−5)720×xn−6α6
=(n−6)5040×720×x−1α=(n−6)7x×α....(2)
and
T9T8=dc=n(n−1)(n−2)(n−3)(n−4)(n−5)(n−6)(n−7)40320×xn−8α8n(n−1)(n−2)(n−3)(n−4)(n−5)(n−6)5040×xn−7α7=(n−6)40320×5040×x−1×α=(n−7)8xα.....(3)
Again, dividing (1) by (2) and (2) by (3), we get
=baca=(n−5)α6x(n−6)7x×α=b2ac=(n−5)6×7(n−6)
=b2ac=7(n−5)6(n−6).....(4)
and
=cbdc=(n−6)7x×α(n−7)8x×α
=c2bd=8(n−6)7(n−7)
Now subtract 1 from both sides of equation
=b2ac−1=7(n−5)6(n−6)−1
⇒b2−acac=7n−35−6n+366(n−6)=n+16(n−6)......(6)
and
c2bd−1=8(n−6)7(n−7)−1=8n−48−7n+497(n−7)=c−bdbd=(n+1)7(n−7)....(7)
Again, on dividing 6 by 7
b2−acacc2−bdbd=(n+1)6(n−6)(n+1)7(n−7)=b2−acc2−bd×bdac=7(n−7)6(n−6).......(8)
On multiplying (5) by (8)
=c2−bdb2−ac×acbd×c2bd=48(n−6)249(n−7)2=c2bd×b2−acc2−bd×bdac=8(n−6)7(n−7)×7(n−7)6(n−6)
=b2−acc2−bd×ca=43=b2−acc2−bd=4a3c
Hence proved.