CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a,b,c and d in any binomial expansion be the 6th, 7th, 8th and 9th terms respectively, then prove that b2acc2bd=4a3c.

Open in App
Solution

Let

T6=a+nC5xn5α5

=n!5!(n5)!×xn5α5=n(n1)(n2)(n3)(n4)120×xn5α5

T7=b=nC6xn6α6

=n!6!(n6)!×xnrα6=n(n1)(n2)(n3)(n4)(n5)720×xn6α6

T8=c=nC7xn7α7

=n!7!(n7)!×xn7α7=n(n1)(n2)(n3)(n4)(n5)(n6)5040×xn7α7

T9=d=nC8xn8α8

=n!8!(n8)!×xn8α8=n(n1)(n2)(n3)(n4)(n5)(n6)(n7)40320×xn8α8

To prove: b2acc2bd=4a3c

Now dividing b by a i.e. T7 by T6

T7T6=ba=n(n1)(n2)(n3)(n4)(n5)720×xn6α6n(n1)(n2)(n3)(n4)120×xn5α5

=n(n1)(n2)(n3)(n4)(n5)×120×xn6α6720n(n1)(n2)(n3)(n4)×xn5α5=n56×x1α

=(n5)α6x....(1)

Now,

T8T7=cd=n(n1)(n2)(n3)(n4)(n5)(n6)5040n(n1)(n2)(n3)(n4)(n5)720×xn6α6

=(n6)5040×720×x1α=(n6)7x×α....(2)

and

T9T8=dc=n(n1)(n2)(n3)(n4)(n5)(n6)(n7)40320×xn8α8n(n1)(n2)(n3)(n4)(n5)(n6)5040×xn7α7=(n6)40320×5040×x1×α=(n7)8xα.....(3)

Again, dividing (1) by (2) and (2) by (3), we get

=baca=(n5)α6x(n6)7x×α=b2ac=(n5)6×7(n6)

=b2ac=7(n5)6(n6).....(4)

and

=cbdc=(n6)7x×α(n7)8x×α

=c2bd=8(n6)7(n7)

Now subtract 1 from both sides of equation

=b2ac1=7(n5)6(n6)1

b2acac=7n356n+366(n6)=n+16(n6)......(6)

and

c2bd1=8(n6)7(n7)1=8n487n+497(n7)=cbdbd=(n+1)7(n7)....(7)

Again, on dividing 6 by 7

b2acacc2bdbd=(n+1)6(n6)(n+1)7(n7)=b2acc2bd×bdac=7(n7)6(n6).......(8)

On multiplying (5) by (8)

=c2bdb2ac×acbd×c2bd=48(n6)249(n7)2=c2bd×b2acc2bd×bdac=8(n6)7(n7)×7(n7)6(n6)

=b2acc2bd×ca=43=b2acc2bd=4a3c

Hence proved.


flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
What is Binomial Expansion?
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon