The correct options are
B x2
C x4
D a2+b2+c2+x2
∣∣
∣
∣∣a2+x2abacabb2+x2bcacbcc2+x2∣∣
∣
∣∣
Taking a,b,c common from C1,C2,C3
=abc∣∣
∣
∣
∣∣a2+x2aaabb2+x2bbccc2+x2c∣∣
∣
∣
∣∣
Multiplying R1,R2,R3 by a,b,c we get
=∣∣
∣
∣∣a2+x2a2a2b2b2+x2b2c2c2c2+x2∣∣
∣
∣∣
C1→C1−C2,C2→C2−C3
=∣∣
∣
∣∣x20a2−x2x2b20−x2c2+x2∣∣
∣
∣∣
=x4∣∣
∣
∣∣10a2−11b20−1c2+x2∣∣
∣
∣∣
R2→R2+R1
=x4∣∣
∣
∣∣10a201a2+b20−1c2+x2∣∣
∣
∣∣
=x4[x2+b2+c2+a2]
Hence, given determinant is divisible by x2,x4,(x2+b2+c2+a2)