The correct option is C a+b+c
Expressing the given determinant as sum of two determinants, we get
∣∣
∣
∣∣aa3a4bb3b4cc3c4∣∣
∣
∣∣−∣∣
∣
∣∣aa31bb31cc31∣∣
∣
∣∣=0,
We take a,b,c common from the first determinant and apply R2→R2−R1,R3→R3−R1 in both determinants.
⇒abc∣∣
∣
∣∣1a2a30b2−a2b3−a30c2−a2c3−a3∣∣
∣
∣∣=∣∣
∣
∣∣aa31b−ab3−a30c−ac3−a30∣∣
∣
∣∣
As a,b,c are all distinct, canceling out b−a and c−a, we get
abc∣∣∣b+ab2+a2+abc+ac2+a2+ac∣∣∣=∣∣∣1b2+a2+ab1c2+a2+ac∣∣∣
Applying R2→R2−R1 and then canceling c−b on both sides, we get
abc∣∣∣b+ab2+a2+ab1a+b+c∣∣∣=∣∣∣1b2+a2+ab0a+b+c∣∣∣
∴abc(ab+b2+bc+a2+ab+ac−b2−a2−ab)=a+b+c
⇒abc(ab+bc+ca)=a+b+c