Let D=∣∣
∣
∣∣aa21+a3bb21+b3cc21+c3∣∣
∣
∣∣
D=∣∣
∣
∣∣aa21bb21cc21∣∣
∣
∣∣+∣∣
∣
∣∣aa2a3bb2b3cc2c3∣∣
∣
∣∣
=∣∣
∣
∣∣aa21bb21cc21∣∣
∣
∣∣+abc∣∣
∣
∣∣1aa21bb21cc2∣∣
∣
∣∣
=(−1)1∣∣
∣
∣∣1a2a1b2b1c2c∣∣
∣
∣∣+abc∣∣
∣
∣∣1aa21bb21cc2∣∣
∣
∣∣[C1↔C3 in 1st det.]
=(−1)2∣∣
∣
∣∣1aa21bb21cc2∣∣
∣
∣∣+abc∣∣
∣
∣∣1aa21bb21cc2∣∣
∣
∣∣[C2↔C3 in 1st det.]
=∣∣
∣
∣∣1aa21bb21cc2∣∣
∣
∣∣+abc∣∣
∣
∣∣1aa21bb21cc2∣∣
∣
∣∣
=(1+abc)∣∣
∣
∣∣1aa21bb21cc2∣∣
∣
∣∣
=(1+abc)∣∣
∣
∣∣1aa20b−ab2−a20c−ac2−a2∣∣
∣
∣∣[R2→R2−R1 and R3→R3−R1]
=(1+abc)∣∣∣b−ab2−a2c−ac2−a2∣∣∣ (expanding along 1st row)
=(1+abc)(b−a)(c−a)∣∣∣1b+a1c+a∣∣∣
=(1+abc)(b−a)(c−a)(c+a−b−a)
=(1+abc)(b−a)(c−a)(c−b)
∴D=(1+abc)(a−b)(b−c)(c−a)
But given D=0
∴(1+abc)(a−b)(b−c)(c−a)=0
∴1+abc=0 [since a, b, c are different ∵a≠b,b≠c,c≠a]
Hence −abc=1