The correct options are
A (b + c) (c + a) (a + b) > 8abc
or (1 - a) (1 - b) (1 - c) > 8abc if a + b + c = 1
B (a + b + c) (bc + ca + ab) > 9abc
or (a+b+c)(1a+1b+1c)>9
C (ae+bf+cg)(ea+fb+gc)>g
D If xi>0, (i=1,2,……n), then
(x1+x2+……+xn)(1x1)+1x2+……+1xn)≥n2
E If asi are all +ive real numbers, then
(1+a1+a21)(1+a2+a22)……(1+an+a2n)≥3na1a2…an
All the five (a), (b), (c), (d), (e) hold good.
Apply A.M.≥G.M. on each bracket and multiply
e.g. (a+b+c)≥3(abc)13
(bc+ca+ab)≥3(bc.ca.ab)13=3(abc)23
Now multiply both.
Similarly all other parts hold good.