The correct option is
B 18Since A,B,C are the angles of a triangle so by angle sum property of a triangle,
A+B+C=πPutting in this value in the given determinant, we get-
Δ=∣∣
∣
∣
∣∣sinA2sinB2sinC2sin(π)sinB2cosA2cosπ2tan(π)sinC2∣∣
∣
∣
∣∣
=∣∣
∣
∣
∣∣sinA2sinB2sinC20sinB2cosA200sinC2∣∣
∣
∣
∣∣
Expanding along R3 we get-
=sinC2(sinA2×sinB2−0)
=sinA2.sinB2.sinC2
Let sinA2.sinB2.sinC2≤k
Then, k is the maximum value of sinA2.sinB2.sinC2
Since, A+B+C=π
⇒A+B+C2=π2⇒A+B2+C2=π2
⇒C2=π2−A+B2
Thus, sinA2.sinB2.sinC2
=sinA2.sinB2.sin(π2−A+B2)
=sinA2.sinB2.cos(A+B2)
Let f(A,B)=sinA2.sinB2.cos(A+B2)
Now, ∂f∂A=12sinB2cos(A+B2)
and, ∂f∂B=12sinA2cos(B+A2)
At the point of maxima of f, ∂f∂A=∂f∂B=0
⇒12sinB2cos(A+B2)=12sinA2cos(B+A2)=0
Considering A,B to be non zero, we have-
cos(A+B2)=cos(B+A2)=0
⇒A+B2=B+A2=π2
Solving we get, A=B=π3 and thus, C=π−A−B=π3
Now, ∂2f∂A2=∂∂A(∂f∂A)
∂2f∂A2=∂∂A(12sinB2cos(A+B2))
⇒∂2f∂A2=−12sinB2sin(A+B2)
At A=B=π3,
∂2f∂A2=−12sinπ6sin(π3+π6)=−14
Again,
∂2f∂B2=∂∂B(∂f∂B)
∂2f∂B2=∂∂B(12sinA2cos(B+A2))
⇒∂2f∂B2=−12sinA2sin(B+A2)
At A=B=π3,
∂2f∂B2=−12sinπ6sin(π3+π6)=−14
And,
∂2f∂A.∂B=∂∂A(∂f∂B)
∂2f∂A.∂B=∂∂A(12sinA2cos(B+A2))
∂2f∂A.∂B=14cos(A+B)
Thus, at A=B=π3,
∂2f∂A.∂B=14cos(π3+π3)=14×13=112
Now, D=∂2f∂A2.∂2f∂B2−(∂2f∂A.∂B)2=(−14)(−14)−(112)2=116−1144=118>0
And, ∂2f∂A2=−14<0
Hence, A=B=C=π3 is a point of maxima.
Thus, the maximum value of sinA2.sinB2.sinC2=sinπ6.sinπ6.sinπ6=(12)2=18
Thus, sinA2.sinB2.sinC2≤18
Hence, the correct answer is option C.