Sum of Trigonometric Ratios in Terms of Their Product
If A,B,C are ...
Question
If A,B,C are angles of a triangle, then 2sinA2cosecB2sinC2−sinAcotB2−cosA is
A
independent of A,B,C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
function of A,B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
function of C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D independent of A,B,C A+B+C=π k=2sinA2cscB2sinC2−sinAcotB2−cosA ⇒k=2sinA2sinC2−2sinA2cosA2cosB2sinB2−cosA ⇒k=2sinA2[sin(π−A−B2)−12(cos(A+B2)+cos(A−B2))]sinB2−cosA ⇒k=2sinA2[cos(A+B2)−12(cos(A+B2)+cos(A−B2))]sinB2−cosA ⇒k=sinA2[cos(A+B2)−cos(A−B2)]sinB2−cosA ⇒k=−2sinA2[sin12(A+B+A−B2)sin12(A+B−A+B2)]sinB2−cosA ⇒k=−2sinA2sinA2sinB2sinB2−(1−2sin2A2) ⇒k=−2sin2A2−(1−2sin2A2)=−1 Therefore k is independent of A,B,C Ans: A