IfA,B,C are angles of a triangle, then sin2A+sin2B-sin2C is equal to
4sinAcosBcosC
4cosA
4sinAcosA
4cosAcosBsinC
Finding the value of :
Given that, A,B,C are the angle of triangle.
⇒A+B+C=π⇒2A+2B+2C=2π….(i)
Now,
sin2A+sin2B-sin2C[sinx+siny=2sin(x+y)2cos(x–y)2,]=2sin(2A+2B)2cos(2A–2B)2–sin[2π–2(A+B)]from(i)=2sin(A+B)cos(A–B)+sin2(A+B)=2sin(A+B)cos(A–B)+2sin(A+B)cos(A+B)since,sin2x=2sinxcosx=2sin(A+B)[cos(A–B)+cos(A+B)]=2sin(π–C)(2cosAcosB)=4cosAcosBsinC
Hence, correct option is (D).