The correct option is C −4
Let α=eiA,β=eiB and γ=eiC then αβγ=ei(A+B+C)=eiπ
αβγ=cosπ+isinπ=−1 ⋯(1)
⇒Δ=∣∣
∣
∣
∣
∣
∣
∣∣1α2γβγ1β2αβα1γ2∣∣
∣
∣
∣
∣
∣
∣∣
Multiplying R1 by α2,R2 by β2 and R3 by γ2, we get
=1α2β2γ2∣∣
∣
∣∣1α2γα2ββ2γ1β2αγ2βγ2α1∣∣
∣
∣∣
Using (1), we get
=∣∣
∣
∣
∣
∣
∣∣1−αβ−αγ−βα1−βγ−γα−γβ1∣∣
∣
∣
∣
∣
∣∣
Multiplying C1,C2,C3 by αβ,γ respectively, we get
=1αβγ∣∣
∣∣α−α−α−ββ−β−γ−γγ∣∣
∣∣
Taking α,β,γ from R1,R2,R3 respectively, we get
=αβγαβγ∣∣
∣∣1−1−1−11−1−1−11∣∣
∣∣=−4