wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A,B,C are angles of a triangle, then the value of e2iAe-iCe-iBe-iCe2iBe-iAe-iBe-iAe2ic is


Open in App
Solution

Compute the required value.

Given: A,B,C are angles of a triangle.

Since, the sum of all interior angle of triangle is 180° or π.

Thus,

A+B+C=πB+C=π-A

Take exponential both side,

e-i(B+C)=e-i(π-A)e-i(B+C)=-eiA ; e-iπ=cos-π-isin-π=-1

We want to calculate the value of =e2iAe-iCe-iBe-iCe2iBe-iAe-iBe-iAe2ic

Taking eiA,eiB,eiC common from R1,R2,R3 respectively,

=eiAeiBeiCeiAe-i(A+C)e-i(A+B)e-i(B+C)eiBe-i(A+B)e-i(B+C)e-i(A+C)eiC=ei(A+B+C)eiAe-i(A+C)e-i(A+B)e-i(B+C)eiBe-i(A+B)e-i(B+C)e-i(A+C)eiCA+B+C=π=eiπeiAe-i(π-B)e-i(π-C)e-i(π-A)eiBe-i(π-C)e-i(π-A)e-i(π-B)eiCeiπ=cosπ+isinπ=-1=-eiAe-iπeiBe-iπeiCe-iπeiAeiBe-iπeiCe-iπeiAe-iπeiBeiC=-eiA-eiB-eiC-eiAeiB-eiC-eiA-eiBeiC

Taking eiA,eiB,eiC common from C1,C2,C3 respectively,

=-eiAeiBeiC1-1-1-11-1-1-11=-ei(A+B+C)1-1-1-11-1-1-11A+B+C=π=-eiπ1-1-1-11-1-1-11=1(1-1)+1(-1-1)-1(1+1)=0-2-2=-4

Hence, the value of e2iAe-iCe-iBe-iCe2iBe-iAe-iBe-iAe2ic is -4.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon