The correct options are
A centroid of triangle ABC is
a+b+c3(^i+^j+^k) D triangle ABC is an equilateral triangle
Given position vectors: [→A=a^i+b^j+c^k] ;[→B=b^i+c^j+a^k];[→C=c^i+a^j+b^k]
Use formula for centroid of triangle when three position vectors A, B and C are
given [→A+→B+→C3]
(a^i+b^j+c^k)+(b^i+c^j+a^k)+(c^i+a^j+b^k)3
^i(a+b+c)+^j(a+b+c)+→k(a+b+c)3
(a+b+c)3(^i+^j+→k).
Also, it is an equilateral triangle if
|−−→AB|=|−−→BC|=|−−→AC|
Let O be the position vector where O=(0^i+0^j+0→k)then;
−−→OA=a^i+b^j+c^k
−−→OB=b^i+c^j+a^k
−−→OC=c^i+a^j+b^k
Find |−−→AB|;
−−→AB=−−→OB−−−→OA
(b^i+c^j+a^k)−(a^i+b^j+c^k)
(b−a)^i+(c−b)^i+(a−c)^i
|−−→AB|=−−→OB−−−→OA
|−−→AB|=√(b−a)2+(c−b)2+(a−c)2]
−−→AB|=√a2+b2−2ab+c2+b2−2bc+a2+c2−2ac
|−−→AB|=√2(a2+b2+c2)−2ab−2bc−2ac
Similarly, |−−→AC|=−−→OC−−−→OA]
|−−→AC|=√(c−a)2+(a−b)2+(b−c)2
|−−→AC|=√c2+a2−2ac+a2+b2−2ab+b2+c2−2bc
|−−→AC|=√2(a2+b2+c2)−2ab−2bc−2ac
Similarly, |−−→BC|=√2(a2+b2+c2)−2ab−2bc−2ac
Hence, the given position vectors forms and equilateral triangle ABC and the centroid of the triangle is
given as (a+b+c)3(^i+^j+→k).
Option (A) and (D) both are correct.