The correct option is D 6√2
Ans.(d).
Let z=a+bw+cw2
∴¯z=a+bw2+cw
∴|z|=|¯z|
and z¯z=a2+b2+c2−bc−ca−ab
|z|2=12[(a−b)2+(b−c)2+(c−a)2]
x=|z|+|¯z|=2|z| by (1)
∴x2=4|z|2=4.12[∑(a−b)2]
∴x=√2[(a−b)2+(b−c)2+(c−a)2]
Since, a,b,c are integers, x will be minimum of a,b,c
are consecutive integers p,p+1,+2
∴x=√2[1+1+4]=6√2⇒ (d).