If a,b,c are distinct positive numbers, each different from 1, such that [logbalogca-logaa]+[logablogcb-logbb]+[logaclogbc-logcc]=0,thenabc=
1
2
3
4
Explanation for correct option:
Find the value of abc:
Given, [logbalogca-logaa]+[logablogcb-logbb]+[logaclogbc-logcc]=0
we know that, lognm=logmlogn
using the above property in the given equation
(logalogbรlogalogc-logaloga)+(logblogaรlogblogc-logblogb)+(logclogaรlogclogb-logclogc)=0
โ [(loga)2logbรlogc-1]+[(logb)2logaรlogc-1]+[(logc)2logaรlogb-1]=0
โ (loga)3+(logb)3+(logc)3logaรlogbรlogc=3
โ (loga)3+(logb)3+(logc)3=3รlogaรlogbรlogc
We know that, if p3+q3+r3=3pqr
Then p+q+r=0 using this property,
(log10a)+(log10b)+(log10c)=0
โ log10abc=0
โดabc=1
Hence, correct option is (A)