If a, b, c are distinct positive numbers, then the expression (b + c - a) (c + a - b) (a + b - c) - abc
negative
For the terms, (b+c-a) (c+a-b) (a+b-c)
AM > GM [as a,b,c are distinct, AM ≠ GM]
(a+b−c)+(b+c−a)+(c+a−b)3 > 3 √(a+b−c)(b+c−a)(c+a−b)
⇒ a+b+c3 > 3 √(a+b−c)(b+c−a)(c+a−b)
⇒ (a+b+c3)3 > (a+b-c) (b+c-a) (c+a-b) -----------------(1)
Again for a,b,c
AM > GM [a ≠ b ≠ c. so, AM≠ GM]
a+b+c3 > 3√abc
(a+b+c3)3 > abc
Subtracting (2) from (1), we get
0 > (a+b-c) (b+c-a) (c+a-b) - abc
(or) (a+b-c) (b+c-a) (c+a-b) - abc < 0
So, option (b) is true