The correct option is
B Non-positive
Without loss of generality we can assume that a≥b≥c
Let
(−a+b+c)(a−b+c)(a+b−c)=S
⇒S=(−a+b+c)[a−(b−c)][a+(b−c)]
⇒S=(−a+b+c)[a2−(b−c)2]
⇒S=(−a+b+c)[a2−b2−c2+2bc]
⇒S=−(a3+b3+c3)−2abc+b2c+bc2+ab2+a2b+ac2+a2c
⇒abc−S=(a3+b3+c3)+3abc−(b2c+bc2+ab2+a2b+ac2+a2c)
⇒abc−S=(a3−a2b)+(b3−b2c)+(c3−c2a)+(abc−bc2)+(abc−ab2)+(abc−a2c)
⇒abc−S=a2(a−b)+b2(b−c)+c2(c−a)+bc(a−c)+ab(c−b)+ac(b−a)
⇒abc−S=a(a−b)(a−c)+b(b−c)(b−a)+c(c−a)(c−b)
⇒abc−S=(a−b)[a(a−c)−b(b−c)]+c(c−a)(c−b)
⇒abc−S=(a−b)2[a2−b2+c(b−a)]+c(c−a)(c−b)
⇒abc−S=(a−b)2[a+b−c]+c(c−a)(c−b)
Now (c−a)≤0 and (c−b)≤0
⇒c(c−a)(c−b)≥0
and
(a−b)2(a+b−c)≥0
This shows
abc−S≥0
⇒S−abc≤0⇒(b+c−a)(c+a−b)(a+b−c)−abc≤0
Hence, the expression is non-positive.
So, (C)