wiz-icon
MyQuestionIcon
MyQuestionIcon
12
You visited us 12 times! Enjoying our articles? Unlock Full Access!
Question

If a,b,c are distinct positive numbers, then the expression (b+c−a)(c+a−b)(a+b−c)−abc is

A
Zero
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
Imaginary
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Non-positive
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
Non-negative
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B Non-positive
Without loss of generality we can assume that abc
Let
(a+b+c)(ab+c)(a+bc)=S
S=(a+b+c)[a(bc)][a+(bc)]
S=(a+b+c)[a2(bc)2]
S=(a+b+c)[a2b2c2+2bc]
S=(a3+b3+c3)2abc+b2c+bc2+ab2+a2b+ac2+a2c
abcS=(a3+b3+c3)+3abc(b2c+bc2+ab2+a2b+ac2+a2c)
abcS=(a3a2b)+(b3b2c)+(c3c2a)+(abcbc2)+(abcab2)+(abca2c)
abcS=a2(ab)+b2(bc)+c2(ca)+bc(ac)+ab(cb)+ac(ba)
abcS=a(ab)(ac)+b(bc)(ba)+c(ca)(cb)
abcS=(ab)[a(ac)b(bc)]+c(ca)(cb)
abcS=(ab)2[a2b2+c(ba)]+c(ca)(cb)
abcS=(ab)2[a+bc]+c(ca)(cb)
Now (ca)0 and (cb)0
c(ca)(cb)0
and
(ab)2(a+bc)0
This shows
abcS0
Sabc0(b+ca)(c+ab)(a+bc)abc0
Hence, the expression is non-positive.
So, (C)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Remainder Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon