If a,b,c are distincts & w(≠1) is a cube of unity then minimum value of x=|a+bw+cw2|+|a+bw2+cw|
A
2√3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D2√3 Let z1=b+bw+cw2 |z1|2=|a+bw+cw2|2 →z1z1=a2+b2+c2−ab−bc−ca ∴|z1|=√a2+b2+c2−ab−bc−ca →√12(a+b)2+(b−c)2+(c−a)2 similarly |z2|=√12{(a−b)2+(b−c)2+(c−a)2} |z1|+|z2|=√2√(a−b)2+(b−c)2+(c−a)2 a, b, c are distinct integers ∴ min value−1,0,1 |z1|+|z2|=√1+1(2)2 |z1|+|z2|=√2×√6=2√3