IfA,B,C are events such that P(A)=0.3,P(B)=0.4,P(C)=0.8,P(A∩B)=0.08,P(A∩C)=0.28,P(A∩B∩C)=0.09.IfP(A∪B∪C)≥0.75, then find the range of x=P(B∩C) lies in the interval
0.23≤x≤0.48
0.23≤x≤0.47
0.22≤x≤0.48
None of these
Explanation for correct option:
Given,
P(A)=0.3,P(B)=0.4,P(C)=0.8,P(A∩B)=0.08,P(A∩C)=0.28,P(A∩B∩C)=0.09.&P(A∪B∪C)≥0.75
Now,
P(A∪B∪C)≥0.75
⇒0.75≤P(A∪B∪C)≤1as probability varies from 0 to 1
P(A∪B∪C)=P(A)+P(B)+P(C)–P(A∩B)–P(B∩C)–P(C∩A)+P(A∩B∩C)⇒0.3+0.4+0.8-(0.08+0.28+P(B∩C))+0.09⇒0.75≤1.23–P(B∩C)≤1⇒-0.48≤-P(B∩C)≤-0.23⇒0.23≤P(B∩C)≤0.48
Hence, the correct option (A).
Let A, B and C be the three events such that P(A)=0.3, P(B)=0.4, P(C)=0.8, P(A∩B)=0.08, P(A∩C)=0.28 and P(A∩B∩C)=0.09. If P(A∪B∪C)≥0.75, then P(B∩C)satisfies