If a,b,c are in A.P. and a2,b2,c2 are in H.P, then
a,b,c are in AP
2b=a+c−(1)
a2,b2,c2 are in HP
1a2,1b2⋅1c2 are in AP
2b2=1a2+1c2
2(a+c2)2=1a2+1c2
8a2+c2+2ac=a2+c2a2c2
8a2c2=(a2+c2)2+2ac(a2+c2)
8a2c2=a4+c4+2a2c2+2a3c+2c3a
a4+c4−6a2c2+2a3c+2ac3=0
(a2−c2)2−4a2c2+2a3c+2ac3=0
(a−c)2(a+c)2+2ac(a2+c2−2ac)=0
(a−c)2(a+c)2+2ac(a−c)2=0
(a−c)2((a+c)2+2ac)=0
a−c=0 or (a+c)2+2ac=0
a=c−(2)
from equation (1) and (2)
2b=c+cb=ca=b=c