If a, b, c are in A.P. and a, c−b, b−a are in G.P. (a≠b≠c), then a:b:c is
Here, b=12(a+c) and (c−b)2=a(b−a)
⇒[c−12(a+c)]2=a[12(a+c)−a]
⇒c2+3a2=4ac
⇒c2+a2−2ac+2a2=2ac
⇒(c−a)2=2a(c−a)
⇒c−a=2a
Since a≠c,⇒c=3a, so, b=2a
∴ a1=b2=c3 i.e., a:b:c=1:2:3.