If A, B, C are in A.P., then sinA−sinCcosC−cosA=
cot B
If A, B, C are in A.P.
B-A=C-B
Or. 2B=A+C=sinA−sinCcosC−cosA=2sin(A−C2)cos(A+C2)−2sin(C+A2)sin(C−A2)[∵sinA−sinB=2sin(A−B2)cos(A+B2)]and cosA−cosB=−2sin(A+B2)cos(A−B2)=sin(A−C2)cos(A+C2)sin(A+C2)sin(A−C2)=cos(A+C2)sin(A+C2)=cosBsinB=cotB