if a2(b+c),b2(a+c),c2(a+b) are in AP then
2b2(a+c)=a2(b+c)+c2(a+b) (we have to prove this)
RHS:
=a2(b+c)+c2(a+b)
=a2b+a2c+c2a+c2b
=b(a2+c2)+ac(a+c)
since a,b,c are in AP so b=a+c2
RHS =(a+c)(a2+b2)2+ac(a+c)
=(a+c)(a2+b2+2ac)2
=(a+c)32
=2(a+c)b2 (after putting a+c=2b)