wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a,b,care in AP, then 1(a+b),1(a+c),1(b+c) are in


Open in App
Solution

Step 1. Let a=A-d,b=A,c=A+d where d is the common difference.

Given a,b,care in AP

Now,

1(a+b)=(b-a)(a+b)d=(b-a)(b+a)(a+b)d=(b-a)d....(i)

1(a+c)=(12d)(2d)(a+c)=(12d)((A+d)-(A-d))(a+c)=(12d)(c-a)(a+c)=(12d)(c-a)(c+a)(a+c)=(c-a)2d....(ii)

1(b+c)=(1d)((A+d)-A)(b+c)=(1d)(c-b)(b+c)=(1d)(c+b)(c-b)(b+c)=(c-b)d....(iii)

Step 2. Add equation (i) and (iii), we get

1(a+b)+1(b+c)=(b-a)d+(c-b)d=(c-a)d=2(a+c)(from(ii))

Hence, 1(a+b),1(a+c),1(b+c) are in AP.


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon