If a,b,care in AP, then 1(a+b),1(a+c),1(b+c) are in
Step 1. Let a=A-d,b=A,c=A+d where d is the common difference.
Given a,b,care in AP
Now,
1(a+b)=(b-a)(a+b)d=(b-a)(b+a)(a+b)d=(b-a)d....(i)
1(a+c)=(12d)(2d)(a+c)=(12d)((A+d)-(A-d))(a+c)=(12d)(c-a)(a+c)=(12d)(c-a)(c+a)(a+c)=(c-a)2d....(ii)
1(b+√c)=(1d)((A+d)-A)(b+c)=(1d)(c-b)(b+c)=(1d)(c+b)(c-b)(b+c)=(c-b)d....(iii)
Step 2. Add equation (i) and (iii), we get
1(a+b)+1(b+c)=(b-a)d+(c-b)d=(c-a)d=2(a+c)(from(ii))
Hence, 1(a+b),1(a+c),1(b+c) are in AP.
If b+ca,c+ab,a+bc are in AP, then prove that
(i) 1a,1b,1care in AP.
(ii) bc,ca,abare in AP.
If (b+c-a)a,(c+a-b)b,(a+b-c)c are in AP, then a,b,c are in
3.If a2,b2,c2 are in AP, then prove that
(i) ab+c,bc+a,ca+b are in AP.