If a, b, c are in AP, then determinant ∣∣
∣∣x+2x+3x+2ax+3x+4x+2bx+4x+5x+2c∣∣
∣∣ is
a) zero
b) 1
c) x
c) 2x
Let A=∣∣
∣∣x+2x+3x+2ax+3x+4x+2bx+4x+5x+2c∣∣
∣∣=12∣∣
∣∣x+2x+3x+2a001(2b−a−c)x+4x+5x+2c∣∣
∣∣
(using R2→2R2−R1−R3)
But a,b,c are in AP. Using 2b=a+c, we get
A=12∣∣
∣∣x+2x+3x+2a000x+4x+5x+2c∣∣
∣∣
[Since, all elements of R2 are zero]
Hence, the correct option is (a).