If a, b, c are in G.P. and a1x=b1y=c1z
AP
(a) AP
a, b and c are in G.P.
∴b2=ac
Taking log on both the sides :
2log b=log a+log c .......... (i)
Now, a1x=b1y=c1z
Taking log on both the sides :
log ax=log by=log cz ....... (ii)
Now, comparing (i) and (ii) :
log ax=log a+log c2y=log cz
⇒log ax=log a+log c2y and log ax=log cz
⇒log a(2y−x)=x log c and log alog c=xz
⇒log alog c=x(2y−x) and log alog c=xz
⇒x(2y−x)=xz
⇒2y=x+z
Thus, x, y and z are in A.P.