If a, b, c are in G.P., prove that:
(i) a(b2+c2)=c(a2+b2)
(ii) a2b2c2(1a3+1b3+1c3)=a3+b3+c3
(iii) (a+b+c)2a2+b2+c2=a+b+ca−b+c
(iv) 1a2−b2+1b2=1b2−c2
(v) (a+2b+2c)(a−2b+2c)=a2+4c2.
(v) (a+2b+2c)(a−2b+2c)=a2+4c2.
(i) a(b2+c2)=c(a2+b2)
Since, a, b, c are in G.P.
∴ a = a, b = ar, c = ar2
a(b2+c2)=c(a2+b2)
a(a2r2+a2r4)=ar2(a2+a2r2)
a3r2(1+r2)=a3r2(1+r2)
LHS = RHS
(ii) a2b2c2(1a3+1b3+1c3)=a3+b3+c3
Since, a, b, c are in G.P.
∴a=a,b=ar,c=ar2
LHS = a2b2c2(1a3+1b3+1c3)
=a2×a2r2×a2r4(1a3+1a3r3+1a3r6)
=a6r6(r6+r3+1a3r6)
=a3(r6+r3+1)
=a3+a3r3+a3r6
=a3+(ar)3+(ar2)3
=a3+b3+c3
=RHS
∴LHS=RHS
(iii) (a+b+c)2a2+b2+c2=a+b+ca−b+c
Since, a, b, c are in G.P.
∴a=a,b=ar,c=ar2
LHS =(a+b+c)2a2+b2+c2
=(a+ar+ar2)2a2+a2r2+a2r4
=a2(1+r+r2)2a2(1+r2+r4)
=a2(1+r+r2)2a2[(1+r2−r)(1+r2+r)]
=a(1+r+r2)a(1+r2−r)
=a+ar+ar2a+ar−ar
=a+b+ca−b+c
= RHS
∴ LHS = RHS
(iv) 1a2−b2+1b2=1b2−c2
Since, a, b, c are in G.P.
∴ a = a, b = ar, c = ar2
LHS = 1a2−b2+1b2
=1a2−a2r2+1a2r2
=1a2[11−r2+1r2]
=1a2[r2+1−r2(1−r2)r2]
=1a2[1r2−r4]
=1(ar)2−(ar2)2
=1b2−c2
=RHS
∴ LHS = RHS
(v) (a+2b+2c)(a−2b+2c)=a2+4c2.
Since, a, b, c are in G.P.
∴ a = a, b = ar, c = ar2
LHS = (a+2b+2c)(a−2b+2c)
=(a+2ar+2ar2)(a−2ar+2ar2)
=a2(1+2r+2r2)(1−2r+2r2)
=a2(1+2r+2r2)(1−2r+2r2)
=a2[(1+2r2)2−(2r)2]
=a2[1+4r4+4r2−4r2]
=a2+4(ar2)2
=a2+4c2
= RHS
∴LHS=RHS