wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a, b, c are in G.P., prove that:

(i) a (b2 + c2) = c (a2 + b2)

(ii) a2b2c21a3+1b3+1c3=a3+b3+c3

(iii) (a+b+c)2a2+b2+c2=a+b+ca-b+c

(iv) 1a2-b2+1b2=1b2-c2

(v) (a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.

Open in App
Solution

a, b and c are in G.P.
b2=ac .......(1)

(i) LHS=ab2+c2=ab2+ac2=aac+cb2 Using (1)=ca2+b2=RHS

(ii) LHS=a2b2c21a3+1b3+1c3=b2c2a+a2c2b+a2b2c=acc2a+b22b+a2acc Using (1)=a3+b3+c3=RHS

(iii) LHS=a+b+c2a2+b2+c2=a+b+c2a2-b2+c2+2b2=a+b+c2a2-b2+c2+2ac Using (1)=a+b+c2a+b+ca-b+c a+b+ca-b+c=a2-b2+c2+2ac=a+b+ca-b+c =RHS

(iv) LHS=1a2-b2+1b2=b2+a2-b2a2-b2b2=a2a2b2-b4=a2a2ac-ac2=1ac-c2=1b2-c2=RHS

(v) LHS =a+2b+2ca-2b+2c=a2-4b2+4c2+4ac=a2-4ac+4c2+4ac Using (1)=a2+4c2=RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Modulus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon