If a, b, c are in G.P., prove that:
(i) a(b2+c2)=c(a2+b2)
(ii) a2b2c2(1a3+1b3+1c3)=a3+b3+c3
(iii) (a+b+c)2a2+b2+c2=a+b+ca−b+c
(iv) 1a2−b2+1b2=1b2−c2
(v) (a+2b+2c)(a−2b+2c)=a2+4c2.
If a, b, c, d are in G.p., prove that :
(i) (a2+b2),(b2+c2),(c2+d)2 are in G.P.
(ii) (a2−b2),(b2−c2),(c2−d)2 are in G.P.
(iii) 1a2+b2,1b2+c2,1c2+d2 are in G.P.
(iv) (a2+b2+c2),(ab+bc+cd),(b2+c2+d2)