1b−1a=1c−1b
⇒(sinA−sinB)sinAsinB=sinB−sinCsinBsinC
or 2sinA−B2cosA+B22sin(A/2)cos(A/2)
=2sinB−C2cosB+C22sin(C/2)cos(C/2)
or sin2C2cosC2sinA−B2
=sin2A2cosA2sinB−C2
or =sin2A2cosB+C2sinB−C2
or sin2C2(sin2A2−sin2B2)
=sin2A2(sin2B2−sin2C2)
Divide by sin2(A/2)sin2(B/2)sin2(C/2)
∴1sin2(B/2)−1sin2(A/2)
=1sin2(C/2)−1sin2(B/2)
=1sin2(C/2)−1sin2(B/2)
∴1sin2(A/2),1sin2(B/2),1sin2(C/2) are in A.P.
or sin2(A/2),sin2(B/2),sin2(C/2) are in H.P.