If a, b, c, are in H.P. then
All are correct
Since, a, b, c, are in H.P. therefore, b=2aca+c ...(i)
Now ba=2ca+c
Applying componendo and dividendo, we get
b+ab−a=2c+a+c2c−a−c=3c+ac−a
Also from (i) bc=2aa+c⇒b+cb−c=3a+ca−c∴b+ab−a+b+cb−c=3c+ac−a+3a+ca−c=3c+a−3a−cc−a=2(c−a)c−a=2
Again since a,b,c, are in H.P.
∴1b−1a=1c−1b⇒a−bab=b−cbc⇒a−bb−c=ac
Next 1b−a+1b−c=12aca+c−a+12aca+c−c=a+cac−a2+a+cac−c2=a+ca(c−a)+a+cc(a−c)=c+ac−a[1a−1c]=c+ac−a[c−aca]=c+aca=1c+1a