If a,b,c are in H.P ,then prove that b+ab−a+b+cb−c is equal to 2.
Open in App
Solution
a,b,c are in H.P⇒1a,1b,1careinA.P⇒1a+1c=2b⇒a+c=2acb⇒ab+bc=2acNow,b+ab−a+b+cb−c=(b+a)(b−c)+(b+c)(b−a)(b−a)(b−c)=b2+ab−bc−ac+b2−ab+bc−abb2−ab+ac−bc=2b2−2acb2−2ac+ac=2(b2−ac)b2−ac=2