The correct options are
A ab+c−a,bc+a−b,ca+b−c are in H.P.
B 2b=1b−a+1b−c
C a−b2,b2,c−b2 are in G.P.
D ab+c,bc+a,ca+b are in H.P.
(A) Given, a, b, c are in H.P.
⇒1a,1b,1c are in A.P.
⇒a+b+ca,b+c+ab,c+a+bc are in A.P.
⇒a+b+ca−2,b+c+ab−2,c+a+bc−2 are in A.P.
⇒a+b+c−2aa,b+c+a−2bb,c+a+b−2cc are in A.P.
⇒b+c−aa,c+a−bb,a+b−cc are in A.P.
Thus, ab+c−a,bc+a−b,ca+b−c are in H.P.
(B) Since a, b, c are in H.P.,
So, the harmonic mean:
b=2aca+c
a+c=2acb .......(i)
Cosider 1b−a+1b−c=b−c+b−a(b−a)(b−c)
=2b−(a+c)(b−a)(b−c)
=2b−(a+c)b2−b(a+c)+ac
Substitute the value of equation(i)
=2b−2acbb2−b(2acb)+ac
=2bb2−acb2−ac
=2b
Therefore, 1b−a+1b−c=2b
(C) Let us verify geometric mean for given three numbers, then consider
(a−b2)×(c−b2)
=ac−b2(a+c)+b44
=ac−b22acb+b24 [ from equation (i)]
=b24
=(b2)2
∴a−b2,b2,c−b2 are in G.P.
(D) Since, we have a+b+ca,b+c+ab,c+a+bc are in A.P.
a+b+ca−1,b+c+ab−1,c+a+bc−1 in A.P.
⇒a+b+c−aa,b+c+a−bb,c+a+b−cc in A.P
⇒b+ca,c+ab,a+bc in A.P
∴ab+c,bc+a,ca+b in H.P.