Given: a2+b2+c2=29 and ab+bc+ca=26
Using identity,
(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
(a+b+c)2=a2+b2+c2+2(ab+bc+ac)
(a+b+c)2=29+2(26)
(a+b+c)2=29+52
(a+b+c)2=81
∴(a+b+c)=√81
(a+b+c)=±9
Since a,b,c are natural numbers,
So, value of (a+b+c) will be always positive.
∴(a+b+c)=9
Hence, (a) is the correct option.