The correct option is
A ⎡⎢⎣a−1000b−1000c−1⎤⎥⎦Consider
A=∣∣
∣∣a000b000c∣∣
∣∣
Firstly we find the determinant of A as shown below:
|A|=a[(b)(c)−(0)(0)]−0[(0)(c)−(0)(0)]+0[(0)(0)−(0)(b)]
|A|=a[bc]−0+0
|A|=abc≠0
Therefore, A−1 exists.
Now to find adjointofA, we calculate the cofactors of A, so let Cij be cofactor of aij in A. therefore the cofactors are as shown below:
C11=∣∣∣b00c∣∣∣=b(c)−0(0)=bc
⇒C11=bc
C12=∣∣∣000c∣∣∣=0(c)−0(0)=0
⇒C12=0
C13=∣∣∣0b00∣∣∣=0(0)−0(b)=0
⇒C13=0
C21=∣∣∣000c∣∣∣=0(c)−0(0)=0
⇒C21=0
C22=∣∣∣a00c∣∣∣=a(c)−0(0)=ac
⇒C22=ac
C23=∣∣∣a000∣∣∣=a(0)−0(0)=0
⇒C23=0
C31=∣∣∣00b0∣∣∣=0(0)−b(0)=0
⇒C31=0
C32=∣∣∣a000∣∣∣=a(0)−0(0)=0
⇒ C32=0
C33=∣∣∣a00b∣∣∣=a(b)−0(0)=ab
⇒C33=ab
Hence the adjoint of A is as follows:
adjA=⎡⎢⎣C11C12C13C21C22C23C31C32C33⎤⎥⎦T=⎡⎢⎣bc000ac000ab⎤⎥⎦T
⇒adjA=⎡⎢⎣bc000ac000ab⎤⎥⎦
Now we find the inverse of A:
A−1=1|A|⋅adj.A
A−1=1abc⋅⎡⎢⎣bc000ac000ab⎤⎥⎦
A−1=⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣bcabc000acabc000ababc⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
A−1=⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣1a0001b0001c⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
A−1=⎡⎢⎣a−1000b−1000c−1⎤⎥⎦