If a,b, c are positive real numbers, prove that b2+c2b+c+c2+a2c+a+a2+b2a+b≥a+b+c
Open in App
Solution
Since (b+c)2+(b−c)2=2(b2+c2),
it follows that b2+c2≥12(b+c)2, i.e., b2+c2b+c≥12(b+c) Similarly c2+a2c+a≥12(c+a) a2+b2a+b≥12(a+b) Adding corresponding sides of the above inequalities, we have b2+c2b+c+c2+a2c+a+a2+b2a+b≥a+b+c