wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If a,b,care positive real numbers such that a+b+c=18, find the maximum value of a2b3c4.


Open in App
Solution

Find the maximum value of a2b3c4.

Given: a+b+c=18

Dividing a into two equal parts.

a=a2+a2

Dividing b into three equal parts.

b=b3+b3+b3

Dividing c into four equal parts.

c=c4+c4+c4+c4

we know that the relation A.M≥G.M

a2+a2+b3+b3+b3+c4+c4+c4+c49≥a24×b333×c44419

⇒ a+b+c9≥a2b3c4334519

⇒ 189≥a2b3c4334519

⇒ 2≥a2b3c4334519

⇒ 29≥a2b3c43345

⇒ 29×33×45≥a2b3c4

⇒ 29×33×210≥a2b3c4

⇒ 219×33≥a2b3c4

Hence, the maximum of a2b3c4 is 219×33.


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Let's Add Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon