If a, b, c are positive real numbers such that a + b + c = 18, then maximum value of a2b3c4 will be
Given 2.a2+3.b3+4.c4=18
Now
AM≥GM
2.a2+3.b3+4.c49≥((a2)2(b3)3(c4)4)19
(189)9≥(a2)2(b3)3(c4)4
29.22.33.44≥a2b3c4
If a + b + c = 18, find the maximum value of a3b2c given that a, b & c are positive numbers.