wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a,b,c are real, a2+b2+c2=1 and b+ic=(1+a)z, then 1+zi1−zi=

A
aib1+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a+ib1+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
a+ib1c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
aib1c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B a+ib1+c
We have, 1+zi1zi=1+ib+ic1+a1ib+ic1+a=1+ac+ib1+a+cib
=[1+ac+ib][1+a+c+ib][1+a+cib][1+a+c+ib]=z0(1+a+c)2+b2 ...(1)
Now, Real(z0)=(1+ac)(1+a+c)b2
=(1+a)2c2b2=1+a2+2a(1a)2=2a2+2a=2a(1+a)
and, Im(z0)=(1+ac)b+(1+a+c)b
=2b(1+a).
Thus z0=2a(1+a)+i2b(1+a)=2(1+a)(a+ib)
Also, denominator of (1) =1+a2+c2+2a+2c+2ac+b2
=2+2a+2c+2ac=2(1+a)(1+c)
Therefore, 1+zi1zi=2(1+a)(a+ib)2(1+a)(1+c)=a+ib1+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Convexity and Concavity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon