If a,b,c are sides of a triangle and ∣∣
∣
∣∣a2b2c2(a+1)2(b+1)2(c+1)2(a−1)2(b−1)2(c−1)2∣∣
∣
∣∣=0, then
A
ΔABC is necessarily equilateral
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ΔABC is necessarily right angled isosceles
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ΔABC is isosceles
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
ΔABC is scalene triangle
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is BΔABC is isosceles ∣∣
∣
∣∣a2b2c2(a+1)2(b+1)2(c+1)2(a−1)2(b−1)2(c−1)2∣∣
∣
∣∣ Row2 elements=Row2 elements - Row1 elements ∣∣
∣
∣∣a2b2c24a4b4c(a−1)2(b−1)2(c−1)2∣∣
∣
∣∣ Row3 elements=Row3 elements - Row1 elements + Row2 elements/2 ∣∣
∣∣a2b2c24a4b4c111∣∣
∣∣ Col1 elements=Col1 elements - Col2 elements Col3 elements=Col3 elements - Col2 elements ∣∣
∣
∣∣a2−b2b2c2−b24(a−b)4b4(c−b)010∣∣
∣
∣∣ taking out (a-b) and (c-b) from Col1 and Col3 (a−b)(c−b)∣∣
∣∣a+bb2b+c44b4010∣∣
∣∣ which gives ⟹(a−b)(c−b)(a−c)=0 This happens only when any two sides become equal So △ABC is isoceles