If a,b,c are sides of the △ABC such that
(1+b−ca)a⋅(1+c−ab)b⋅(1+a−bc)c≥1, then triangle △ABC must be
Given that (1+b−ca)a×(1+c−ab)b×(1+a−bc)c≥1....(1)
(1+b−ca)a=(1+b−ca)×(1+b−ca)..........(1+b−ca)(atimes)
we can write similar equations wit the other two, there are a total of a+b+c terms
applying A.M≥G.M we get
(1+b−ca)×a+(1+c−ab)×b+(1+a−bc)×ca+b+c≥[(1+b−ca)a×(1+c−ab)b×(1+a−bc)c]1a+b+c
The expression for AM when simplified gives 1.
⇒1≥[(1+b−ca)a×(1+c−ab)b×(1+a−bc)c]1a+b+c⇒[(1+b−ca)a×(1+c−ab)b×(1+a−bc)c]≤1.........(2)⇒Fromthegivenequation(1)and(2),[(1+b−ca)a×(1+c−ab)b×(1+a−bc)c]=1
as all terms can only be greater than or equal to 1 each should be equal to 1.
⇒(1+b−ca)a=(1+c−ab)b=(1+a−bc)c=1⇒b−ca=c−ab=a−bc=0⇒a=b=c
Hence the triangle is equilateral.