wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A, B, C are the angles of a triangle and sin3θ=sin(Aθ)sin(Bθ)sin(Cθ), prove that cotθ=cotA+cotB+cotC and conversely.

Open in App
Solution

The given equation can be written as
sin(Aθ)sinθsin(Bθ)sinθsin(Cθ)sinθ=1
or (sinAcotθcosA)(sinBcotθcosB)(sinCcotθcosC)=1
sinAsinBsinC[(cotθcotA)(cotθcotB)(cotθcotC)]=1
Dividing by sinAsinBsinC, we have
cot3θcot2θS1+cotθS2S3=1sinAsinBsinC
where S2=cotAcotB=1
Also, S1=cotA+cotB+cotC=cosAsinBsinCsinAsinBsinC
S3=cotAcotBcotC=cosAcosBcosCsinAsinBsinC
cotθ(1+cot2θ)=cosAsinBsinCsinAsinBsinCcot2θ+1+cosAcosBcosCsinAsinBsinC
=cosAsinBsinCsinAsinBsinC(cot2θ+1)
[We have used cos(A+B+C)=cosAcosBcosCcosAsinBsinC=1]
Cancel 1+cot2θ
cotθ=cosAsinBsinCsinAsinBsinC=cotA+cotB+cotC.
Converse:
Let sin3θ=sin(Aθ)sin(Bθ)sin(Cθ)
To prove: cotθ=cotA+cotB+cotC
cotθcotA=cotB+cotC
or sin(Aθ)sinθsinA=sin(B+C)sinBsinC=sinAsinBsinC
sin(Aθ)=sinθsin2AsinBsinC ..(1)
Similarly, sin(Bθ)=sinθsin2BsinCsinA (2)
sin(Cθ)=sinθsin2CsinCsinB .(3)
Multiplying (1),(2) and (3),
sin(Aθ)sin(Bθ)sin(Cθ)=sin3θ.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon