The given equation can be written as
sin(A−θ)sinθ⋅sin(B−θ)sinθ⋅sin(C−θ)sinθ=1
or (sinAcotθ−cosA)(sinBcotθ−cosB)(sinCcotθ−cosC)=1
sinAsinBsinC[(cotθ−cotA)(cotθ−cotB)(cotθ−cotC)]=1
Dividing by sinAsinBsinC, we have
cot3θ−cot2θS1+cotθS2−S3=1sinAsinBsinC
where S2=∑cotAcotB=1
Also, S1=cotA+cotB+cotC=∑cosAsinBsinCsinAsinBsinC
S3=cotAcotBcotC=cosAcosBcosCsinAsinBsinC
∴cotθ(1+cot2θ)=∑cosAsinBsinCsinAsinBsinC⋅cot2θ+1+cosAcosBcosCsinAsinBsinC
=∑cosAsinBsinCsinAsinBsinC(cot2θ+1)
[We have used cos(A+B+C)=cosAcosBcosC−∑cosAsinBsinC=−1]
Cancel 1+cot2θ
∴cotθ=∑cosAsinBsinCsinAsinBsinC=cotA+cotB+cotC.
Converse:
Let sin3θ=sin(A−θ)sin(B−θ)sin(C−θ)
To prove: cotθ=cotA+cotB+cotC
cotθ−cotA=cotB+cotC
or sin(A−θ)sinθsinA=sin(B+C)sinBsinC=sinAsinBsinC
∴sin(A−θ)=sinθsin2AsinBsinC ..(1)
Similarly, sin(B−θ)=sinθsin2BsinCsinA (2)
sin(C−θ)=sinθsin2CsinCsinB .(3)
Multiplying (1),(2) and (3),
sin(A−θ)sin(B−θ)sin(C−θ)=sin3θ.