If A, B, C are the angles of a triangle, show that if in Δ ABC, cotA+cotB+cotC=√3, prove that the triangle is equilateral.
Open in App
Solution
Squaring the given relation, we have ∑cot2A+2∑cotAcotB=3∑cotAcotB because ∑cot2A−∑cotAcotB=0 Above is of form x2+y2+z2−xy−yz−zx=0 or 12[(x−y)2+(y−z)2+(z−x)2]=0 Above is possible only when x−y=0,y−z=0, z−x=0 or x=y=z or cotA=cotB=cotC ∴A=B=C⇒Δ is equilateral.