If A,B,Care the angles of a triangle then find cosA+cosB+cosC.
Find the required value:
cosA+cosB+cosC=(cosA+cosB)+cosC=2cosA+B2cosA-B2+cosC ;cosA+cosB=2cosA+B2cosA-B2
Given: A,B,Care the angles of a triangle.
Thus, A+B+C=π
cosA+cosB+cosC=2cosπ2-C2.cosA-B2+cosCcosπ2-θ=sinθ=2sinC2.cosA-B2+1-2sin2C2cos2A=1-2sin2A=1+2sinC2.cosA-B2-sinπ2-(A+B)2sinπ2-θ=cosθ=1+2sinC2.cosA-B2-cos(A+B)2cosA-cosB=2sinA+B2sinB-A2=1+2sinC2.2sinA2.sinB2=1+4sinA2.sinB2.sinC2
Hence, cosA+cosB+cosC=1+4sinA2.sinB2.sinC2.