If A, B, C are the angles of a triangle then show that sinA+sinB+sinC≤3√32.
Open in App
Solution
To prove sinA+sinB+sinC=3√32
We know sinA+sinB=2sin(A+B)2(A−B)2sinC=sin(180−(A+B))=sin(A+B)=2sin(A+B2)cos(A+B2)sinA+sinB+sinC=2sin(A+B2)cos(A−B2)+2sin(A+B2)cos(A+B2)=2sin(A+B2)[cos(A−B2)+cos(A+B2)]2sin(A+B2)(2cosA2cosB2)4sin(A+B2)sin(B+C2)sin(A+C2)Ifx+y+z=1&xyzismaxthenx=y=z=13So,A+B+C;A=B=C=(A+B+C)3Where,sinA+sinB+sinCismax=4sin(1803)=4(√32)3)=4√322=3√32∴sinA+sinB+sinC≤3√32