wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A, B, C are the angles of a triangle then show that sinA+sinB+sinC332.

Open in App
Solution

To prove sinA+sinB+sinC=332
We know sinA+sinB=2sin(A+B)2(AB)2sinC=sin(180(A+B))=sin(A+B)=2sin(A+B2)cos(A+B2)sinA+sinB+sinC=2sin(A+B2)cos(AB2)+2sin(A+B2)cos(A+B2)=2sin(A+B2)[cos(AB2)+cos(A+B2)]2sin(A+B2)(2cosA2cosB2)4sin(A+B2)sin(B+C2)sin(A+C2)If x+y+z=1& xyz is maxthenx=y=z=13So,A+B+C;A=B=C=(A+B+C)3Where,sinA+sinB+sinC is max=4sin(1803)=4(32)3)=4322=332sinA+sinB+sinC332

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon