If A, B, C are the angles of a triangle, then sin(B+C2)= ___.
cotA2
cosA2
sinA2
tanA2
A+B+C=180∘ (sum of angles of a triangle) ⟹B+C=180∘−A ∴B+C2=180∘−A2 B+C2=90∘−A2 Taking sine on both sides we get, sin(B+C2)=sin(90∘−A2) ∴sin(B+C2)=cosA2
If sin A = n sin B, then n−1n+1 tan A+B2 =