wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

If A, B, C are the angles of a triangle, then sin2Acot A1sin2Bcot B1sin2Ccot C1= _____________.

Open in App
Solution

Given: A, B, C are the angles of a triangle
Then, A + B + C = π

Let ∆ = sin2AcotA1sin2BcotB1sin2CcotC1


=sin2AcotA1sin2BcotB1sin2CcotC1Applying R2R2-R1 and R3R3-R1 =sin2AcotA1sin2B-sin2AcotB-cotA1-1sin2C-sin2AcotC-cotA1-1 =sin2AcotA1sinB-sinAsinB+sinAcosBsinB-cosAsinA0sinC-sinAsinC+sinAcosCsinC-cosAsinA0 =sin2AcotA12cosA+B2sinB-A22sinA+B2cosB-A2cosBsinA-cosAsinBsinAsinB02cosA+C2sinC-A22sinA+C2cosC-A2cosCsinA-cosAsinCsinAsinC0 =sin2AcotA12cosA+B2sinA+B22sinB-A2cosB-A2sinA-BsinAsinB02cosA+C2sinA+C22sinC-A2cosC-A2sinA-CsinAsinC0 =sin2AcotA1sin2A+B2sin2B-A2sinA-BsinAsinB0sin2A+C2sin2C-A2sinA-CsinAsinC0 =sin2AcotA1sinA+BsinB-AsinA-BsinAsinB0sinA+CsinC-AsinA-CsinAsinC0 =sin2AcotA1sinπ-CsinB-AsinA-BsinAsinB0sinπ-BsinC-AsinA-CsinAsinC0 A+B+C=π =sin2AcotA1sinCsinB-AsinA-BsinAsinB0sinBsinC-AsinA-CsinAsinC0Expanding along C3 =1sinCsinB-A×sinA-CsinAsinC-sinBsinC-A×sinA-BsinAsinB =sinB-A×sinA-CsinA-sinC-A×sinA-BsinA =-sinA-B×-sinC-AsinA-sinC-A×sinA-BsinA =sinA-B×sinC-AsinA-sinC-A×sinA-BsinA =0

Hence, if A, B, C are the angles of a triangle, then sin2AcotA1sin2BcotB1sin2CcotC1= 0.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon