Let α=eiA, β=eiB and γ=eiC
Then, αβγ=ei(A+B+C)=eiπ
αβγ=cosπ+isinπ=−1 ⋯(1)
⇒Δ=∣∣
∣
∣
∣
∣
∣
∣∣1α2γβγ1β2αβα1γ2∣∣
∣
∣
∣
∣
∣
∣∣
Multiplying R1 by α2, R2 by β2 and R3 by γ2, we get
Δ=1α2β2γ2∣∣
∣
∣∣1α2γα2ββ2γ1β2αγ2βγ2α1∣∣
∣
∣∣
⇒Δ=∣∣
∣
∣
∣
∣
∣∣1−αβ−αγ−βα1−βγ−γα−γβ1∣∣
∣
∣
∣
∣
∣∣ [Using (1)]
Multiplying C1,C2,C3 by αβ,γ respectively,
Δ=1αβγ∣∣
∣∣α−α−α−ββ−β−γ−γγ∣∣
∣∣
Taking α,β,γ from R1,R2,R3 respectively,
Δ=αβγαβγ∣∣
∣∣1−1−1−11−1−1−11∣∣
∣∣=−4
∴|Δ|=4